Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 11(8): 18, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35980669

RESUMEN

Purpose: Cytotoxic agents such as mitomycin C (MMC) are part of the mainstay treatment for limiting subconjunctival scarring following glaucoma filtration surgery (GFS). However, a safer antifibrotic therapy is clinically needed. The anti-scarring properties of 3',4'-dihydroxyflavonol (DiOHF) were evaluated in a mouse model of GFS and in cultured human Tenon's fibroblasts (HTFs). Methods: GFS was performed in C57BL/6 mice receiving daily intraperitoneal injections of DiOHF or vehicle or a single intraoperative injection of MMC. Eyes were harvested on day 14 for assessment of collagen deposition, expression of alpha-smooth muscle actin (α-SMA), cluster of differentiation 31 (CD31), and 4-hydroxy-2-nonenal (4HNE) in the conjunctiva/Tenon's layer. The inhibitory effects of DiOHF on transforming growth factor ß (TGFß)-induced responses were also assessed in HTFs. Results: Treatment with DiOHF demonstrated a reduction in collagen deposition at the GFS site compared to vehicle-treated mice. The degree of 4HNE-positive fluorescence was significantly reduced in DiOHF-treated eyes compared to the other groups, indicating a decrease in oxidative stress. A reduction in expression of α-SMA and CD31 was seen in DiOHF-treated conjunctiva compared to those treated with vehicle. Concordant results were demonstrated in cultured HTFs in vitro. Furthermore, treatment of cultured HTFs with DiOHF also displayed a reduction in the proliferation, migration, and contractility of HTFs. Conclusions: Treatment with DiOHF reduces scarring and angiogenesis in the conjunctiva of mice with GFS at a level comparable to MMC. The reduction in oxidative stress suggests that DiOHF may suppress scarring via different mechanisms from MMC. Translational Relevance: DiOHF may be a safer and superior wound modulating agent than conventional antifibrotic therapy in GFS.


Asunto(s)
Cirugía Filtrante , Glaucoma , Animales , Colágeno/metabolismo , Colágeno/farmacología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Flavonoles , Glaucoma/tratamiento farmacológico , Glaucoma/cirugía , Humanos , Ratones , Ratones Endogámicos C57BL , Mitomicina/metabolismo , Mitomicina/farmacología , Mitomicina/uso terapéutico , Cápsula de Tenon/metabolismo
2.
Toxins (Basel) ; 14(2)2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35202128

RESUMEN

The uremic toxin indoxyl sulfate (IS), elevated in chronic kidney disease (CKD), is known to contribute towards progressive cardiovascular disease. IS activates the aryl hydrocarbon receptor (AhR) mediating oxidative stress and endothelial dysfunction via activation of the CYP1A1 pathway. The present study examines AhR inhibition with the antagonist, CH223191, on IS-mediated impairment of vascular endothelial function and disruption of redox balance. The acute effects of IS on endothelium-dependent relaxation were assessed in aortic rings from Sprague Dawley rats exposed to the following conditions: (1) control; (2) IS (300 µM); (3) IS + CH223191 (1 µM); (4) IS + CH223191 (10 µM). Thereafter, tissues were assessed for changes in expression of redox markers. IS reduced the maximum level of endothelium-dependent relaxation (Rmax) by 42% (p < 0.001) compared to control, this was restored in the presence of increasing concentrations of CH223191 (p < 0.05). Rings exposed to IS increased expression of CYP1A1, nitro-tyrosine, NADPH oxidase 4 (NOX4), superoxide, and reduced eNOS expression (p < 0.05). CH223191 (10 µM) restored expression of these markers back to control levels (p < 0.05). These findings demonstrate the adverse impact of IS-mediated AhR activation on the vascular endothelium, where oxidative stress may play a critical role in inducing endothelial dysfunction in the vasculature of the heart and kidneys. AhR inhibition could provide an exciting novel therapy for CVD in the CKD setting.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Compuestos Azo/farmacología , Endotelio Vascular/efectos de los fármacos , Indicán/farmacología , Pirazoles/farmacología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiología , Citocromo P-450 CYP1A1/genética , Endotelio Vascular/fisiología , Expresión Génica/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica , Vasodilatación/efectos de los fármacos
3.
Life Sci ; 289: 120220, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34902438

RESUMEN

AIMS: Myocardial injury is a major contributor to left ventricular (LV) remodelling activating neurohormonal and inflammatory processes that create an environment of enhanced oxidative stress. This results in geometric and structural alterations leading to reduced LV systolic function. In this study we evaluated the efficacy of NP202, a synthetic flavonol, on cardiac remodelling in a chronic model of myocardial infarction (MI). MAIN METHODS: A rat model of chronic MI was induced by permanent surgical ligation of the coronary artery. NP202 treatment was commenced 2 days post-MI for 6 weeks at different doses (1, 10 and 20 mg/kg/day) to determine efficacy. Cardiac function was assessed by echocardiography prior to treatment and at week 6, and pressure-volume measurements were performed prior to tissue collection. Tissues were analysed for changes in fibrotic and inflammatory markers using immunohistochemistry and gene expression analysis. KEY FINDINGS: Rats treated with NP202 demonstrated improved LV systolic function and LV geometry compared to vehicle treated animals. Furthermore, measures of hypertrophy and interstitial fibrosis were attenuated in the non-infarct region of the myocardium with NP202 at the higher dose of 20 mg/kg (P < 0.05). At the tissue level, NP202 reduced monocyte chemoattractant protein-1 expression (P < 0.05) and tended to attenuate active caspase-3 expression to similar levels observed in sham animals (P = 0.075). SIGNIFICANCE: Improved LV function and structural changes observed with NP202 may be mediated through inhibition of inflammatory and apoptotic processes in the MI setting. NP202 could therefore prove a useful addition to standard therapy in patients with post-MI LV dysfunction.


Asunto(s)
Flavonoides/farmacología , Infarto del Miocardio , Miocardio/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Caspasa 3/biosíntesis , Quimiocina CCL2/biosíntesis , Enfermedad Crónica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Sprague-Dawley
4.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33480422

RESUMEN

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carvedilol/farmacología , Endotelio Vascular/efectos de los fármacos , Resistencia a la Insulina , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Angiografía Coronaria , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Masculino , Metoprolol/farmacología , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Cloruro de Sodio Dietético/administración & dosificación
8.
Int J Cardiol ; 310: 128-136, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32305147

RESUMEN

BACKGROUND: Cardiorenal syndrome (CRS) is a major health burden worldwide in need of novel therapies, as current treatments remain suboptimal. The present study assessed the therapeutic potential of apoptosis signal-regulating kinase 1 (ASK1) inhibition in a rat model of CRS. METHODS: Adult male Sprague-Dawley rats underwent surgery for myocardial infarction (MI) (week 0) followed by 5/6 subtotal nephrectomy (STNx) at week 4 to induce to induce a combined model of heart and kidney dysfunction. At week 6, MI + STNx animals were randomized to receive either 0.5% carboxymethyl cellulose (Vehicle, n = 15, Sham = 10) or G226 (15 mg/kg daily, n = 11). Cardiac and renal function was assessed by echocardiography and glomerular filtration rate (GFR) respectively, prior to treatment at week 6 and endpoint (week 14). Haemodynamic measurements were determined at endpoint prior to tissue analysis. RESULTS: G226 treatment attenuated the absolute change in left ventricular (LV) fractional shortening and posterior wall thickness compared to Vehicle. G226 also attenuated the reduction in preload recruitable stroke work. Increased myocyte cross sectional area, cardiac interstitial fibrosis, immunoreactivity of cardiac collagen-I and III and cardiac TIMP-2 activation, were significantly reduced following G226 treatment. Although we did not observe improvement in GFR, G226 significantly reduced renal interstitial fibrosis, diminished renal collagen-I and -IV, kidney injury molecule-1 immunoreactivity as well as macrophage infiltration and SMAD2 phosphorylation. CONCLUSION: Inhibition of ASK1 ameliorated LV dysfunction and diminished cardiac hypertrophy and cardiorenal fibrosis in a rat model of CRS. This suggests that ASK1 is a critical pathway with therapeutic potential in the CRS setting.


Asunto(s)
Síndrome Cardiorrenal , Disfunción Ventricular Izquierda , Animales , Síndrome Cardiorrenal/tratamiento farmacológico , Fibrosis , Hipertrofia Ventricular Izquierda , MAP Quinasa Quinasa Quinasa 5 , Masculino , Ratas , Ratas Sprague-Dawley
9.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31669609

RESUMEN

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Asunto(s)
Diástole , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Inflamación/patología , Miocitos Cardíacos/patología , Estrés Oxidativo , Estado Prediabético/patología , Estado Prediabético/fisiopatología , Citoesqueleto de Actina/metabolismo , Animales , Conectina/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Guanilato Ciclasa/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Peróxido de Hidrógeno/metabolismo , Masculino , Complejos Multienzimáticos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miosinas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Péptidos/metabolismo , Fosforilación , Ratas Wistar , Superóxidos/metabolismo , Vasodilatación/efectos de los fármacos
10.
J Am Heart Assoc ; 7(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858360

RESUMEN

BACKGROUND: Among the growing numbers of patients with heart failure, up to one half have heart failure with preserved ejection fraction (HFpEF). The lack of effective treatments for HFpEF is a substantial and escalating unmet clinical need-and the lack of HFpEF-specific animal models represents a major preclinical barrier in advancing understanding of HFpEF. As established treatments for heart failure with reduced ejection fraction (HFrEF) have proven ineffective for HFpEF, the contention that the intrinsic cardiomyocyte phenotype is distinct in these 2 conditions requires consideration. Our goal was to validate and characterize a new rodent model of HFpEF, undertaking longitudinal investigations to delineate the associated cardiac and cardiomyocyte pathophysiology. METHODS AND RESULTS: The selectively inbred Hypertrophic Heart Rat (HHR) strain exhibits adult cardiac enlargement (without hypertension) and premature death (40% mortality at 50 weeks) compared to its control strain, the normal heart rat. Hypertrophy was characterized in vivo by maintained systolic parameters (ejection fraction at 85%-90% control) with marked diastolic dysfunction (increased E/E'). Surprisingly, HHR cardiomyocytes were hypercontractile, exhibiting high Ca2+ operational levels and markedly increased L-type Ca2+ channel current. In HHR, prominent regions of reparative fibrosis in the left ventricle free wall adjacent to the interventricular septum were observed. CONCLUSIONS: Thus, the cardiomyocyte remodeling process in the etiology of this HFpEF model contrasts dramatically with the suppressed Ca2+ cycling state that typifies heart failure with reduced ejection fraction. These findings may explain clinical observations, that treatments considered appropriate for heart failure with reduced ejection fraction are of little benefit for HFpEF-and suggest a basis for new therapeutic strategies.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Contracción Miocárdica/fisiología , Miocitos Cardíacos/patología , Volumen Sistólico/fisiología , Animales , Modelos Animales de Enfermedad , Ecocardiografía Doppler , Electrocardiografía , Insuficiencia Cardíaca/diagnóstico , Ventrículos Cardíacos/fisiopatología , Immunoblotting , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Ratas Endogámicas F344
11.
Sci Rep ; 7(1): 18108, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273789

RESUMEN

Reduced clearance of lipoproteins by HDL scavenger receptor class B1 (SR-B1) plays an important role in occlusive coronary artery disease. However, it is not clear how much microvascular dysfunction contributes to ischemic cardiomyopathy. Our aim was to determine the distribution of vascular dysfunction in vivo in the coronary circulation of male mice after brief exposure to Paigen high fat diet, and whether this vasomotor dysfunction involved nitric oxide (NO) and or endothelium derived hyperpolarization factors (EDHF). We utilised mice with hypomorphic ApoE lipoprotein that lacked SR-B1 (SR-B1-/-/ApoER61h/h, n = 8) or were heterozygous for SR-B1 (SR-B1+/-/ApoER61h/h, n = 8) to investigate coronary dilator function with synchrotron microangiography. Partially occlusive stenoses were observed in vivo in SR-B1 deficient mice only. Increases in artery-arteriole calibre to acetylcholine and sodium nitroprusside stimulation were absent in SR-B1 deficient mice. Residual dilation to acetylcholine following L-NAME (50 mg/kg) and sodium meclofenamate (3 mg/kg) blockade was present in both mouse groups, except at occlusions, indicating that EDHF was not impaired. We show that SR-B1 deficiency caused impairment of NO-mediated dilation of conductance and microvessels. Our findings also suggest EDHF and prostanoids are important for global perfusion, but ultimately the loss of NO-mediated vasodilation contributes to atherothrombotic progression in ischemic cardiomyopathy.


Asunto(s)
Antígenos CD36/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria/fisiología , Endotelio Vascular/fisiopatología , Isquemia Miocárdica/fisiopatología , Animales , Antígenos CD36/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Hemodinámica/fisiología , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología
12.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R426-39, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252472

RESUMEN

Chronic intermittent hypoxia (IH) induces oxidative stress and inflammation, which impair vascular endothelial function. Long-term insulin resistance also leads to endothelial dysfunction. We determined, in vivo, whether the effects of chronic IH and insulin resistance on endothelial function augment each other. Male 12-wk-old Goto-Kakizaki (GK) and Wistar control rats were subjected to normoxia or chronic IH (90-s N2, 5% O2 at nadir, 90-s air, 20 cycles/h, 8 h/day) for 4 wk. Coronary endothelial function was assessed using microangiography with synchrotron radiation. Imaging was performed at baseline, during infusion of acetylcholine (ACh, 5 µg·kg(-1)·min(-1)) and then sodium nitroprusside (SNP, 5 µg·kg(-1)·min(-1)), after blockade of both nitric oxide (NO) synthase (NOS) with N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg) and cyclooxygenase (COX, meclofenamate, 3 mg/kg), and during subsequent ACh. In GK rats, coronary vasodilatation in response to ACh and SNP was blunted compared with Wistar rats, and responses to ACh were abolished after blockade. In Wistar rats, IH blunted the ability of ACh or SNP to increase the number of visible vessels. In GK rats exposed to IH, neither ACh nor SNP were able to increase visible vessel number or caliber, and blockade resulted in marked vasoconstriction. Our findings indicate that IH augments the deleterious effects of insulin resistance on coronary endothelial function. They appear to increase the dependence of the coronary microcirculation on NO and/or vasodilator prostanoids, and greatly blunt the residual vasodilation in response to ACh after blockade of NOS/COX, presumably mediated by endothelium-derived hyperpolarizing factors.


Asunto(s)
Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/fisiopatología , Hipoxia/complicaciones , Hipoxia/fisiopatología , Resistencia a la Insulina , Microcirculación , Animales , Enfermedad Crónica , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Progresión de la Enfermedad , Hipoxia/diagnóstico por imagen , Masculino , Ratas , Ratas Wistar
13.
World J Diabetes ; 6(7): 943-60, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26185602

RESUMEN

Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction. Although the molecular pathogenesis of early DCM still remains largely unclear, activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction. Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development, relaxation and stability under pathophysiological stresses. These changes include perturbed calcium handling, suppressed activity of aerobic energy producing enzymes, altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins, reduced actin-myosin cross-bridge cycling and dynamics, and changed myofilament calcium sensitivity. In this review, we will present and discuss novel aspects of the molecular pathogenesis of early DCM, with a special focus on the sarcomeric contractile apparatus.

14.
Cardiovasc Diabetol ; 14: 92, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194354

RESUMEN

BACKGROUND: Impaired actin-myosin cross-bridge (CB) dynamics correlate with impaired left ventricular (LV) function in early diabetic cardiomyopathy (DCM). Elevated expression and activity of Rho kinase (ROCK) contributes to the development of DCM. ROCK targets several sarcomeric proteins including myosin light chain 2, myosin binding protein-C (MyBP-C), troponin I (TnI) and troponin T that all have important roles in regulating CB dynamics and contractility of the myocardium. Our aim was to examine if chronic ROCK inhibition prevents impaired CB dynamics and LV dysfunction in a rat model of early diabetes, and whether these changes are associated with changes in myofilament phosphorylation state. METHODS: Seven days post-diabetes induction (65 mg/kg ip, streptozotocin), diabetic rats received the ROCK inhibitor, fasudil (10 mg/kg/day ip) or vehicle for 14 days. Rats underwent cardiac catheterization to assess LV function simultaneous with X-ray diffraction using synchrotron radiation to assess in situ CB dynamics. RESULTS: Compared to controls, diabetic rats developed mild systolic and diastolic dysfunction, which was attenuated by fasudil. End-diastolic and systolic myosin proximity to actin filaments were significantly reduced in diabetic rats (P < 0.05). In all rats there was an inverse correlation between ROCK1 expression and the extension of myosin CB in diastole, with the lowest ROCK expression in control and fasudil-treated diabetic rats. In diabetic and fasudil-treated diabetic rats changes in relative phosphorylation of TnI and MyBP-C were not significant from controls. CONCLUSIONS: Our results demonstrate a clear role for ROCK in the development of LV dysfunction and impaired CB dynamics in early DCM.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Contracción Miocárdica/efectos de los fármacos , Miocardio/enzimología , Miosinas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Actinas/metabolismo , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Masculino , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Quinasas Asociadas a rho/metabolismo
15.
Cardiovasc Diabetol ; 12: 111, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24059472

RESUMEN

OBJECTIVES: Activation of RhoA/Rho-kinase (ROCK) is increasingly implicated in acute vasospasm and chronic vasoconstriction in major organ systems. Therefore we aimed to ascertain whether an increase in ROCK activity plays a role in the deterioration of coronary vascular function in early stage diabetes. METHODS: Synchrotron radiation microangiography was used to determine in vivo coronary responses in diabetic (3 weeks post streptozotocin 65 mg/kg ip) and vehicle treated male Sprague-Dawley rats (n = 8 and 6). Changes in vessel number and calibre during vasodilator stimulation before and after blockade of nitric oxide synthase and cyclooxygenase were compared between rats. Acute responses to ROCK inhibitor, fasudil (10 mg/kg iv) was evaluated. Further, perivascular and myocardial fibrosis, arterial intimal thickening were assessed by histology, and capillary density, nitrotyrosine and ROCK1/2 expressions were evaluated by immunohistochemical staining. RESULTS: Diabetic rats had significantly elevated plasma glucose (P < 0.001 vs control), but did not differ in fibrotic scores, media to lumen ratio, capillary density or baseline visible vessel number or calibre. Responses to acetylcholine and sodium nitroprusside stimulation were similar between groups. However, in comparison to control rats the diabetic rats showed more segmental constrictions during blockade, which were not completely alleviated by acetylcholine, but were alleviated by fasudil. Further, second order vessel branches in diabetic rats were significantly more dilated relative to baseline (37% vs 12% increase, P < 0.05) after fasudil treatment compared to control rats, while visible vessel number increased in both groups. ROCK2 expression was borderline greater in diabetic rat hearts (P < 0.053). CONCLUSIONS: We found that ahead of the reported decline in coronary endothelial vasodilator function in diabetic rats there was moderate elevation in ROCK expression, more widespread segmental constriction when nitric oxide and prostacyclin production were inhibited and notably, increased calibre in second and third order small arteries-arterioles following ROCK inhibition. Based on nitrotyrosine staining oxidative stress was not significantly elevated in early diabetic rats. We conclude that tonic ROCK mediated vasoconstriction contributes to coronary vasomotor tone in early diabetes.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Angiopatías Diabéticas/tratamiento farmacológico , Microcirculación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Vasodilatadores/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/enzimología , Vasos Coronarios/fisiopatología , Inhibidores de la Ciclooxigenasa/farmacología , Angiopatías Diabéticas/diagnóstico por imagen , Angiopatías Diabéticas/enzimología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Epoprostenol/metabolismo , Fibrosis , Masculino , Miocardio/enzimología , Miocardio/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Sprague-Dawley , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo
16.
Biophys J ; 104(5): 1065-72, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23473489

RESUMEN

Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic). Diffraction patterns were recorded during baseline and dobutamine infusions simultaneous with ventricular pressure-volumetry. From these diffraction patterns myosin mass transfer to actin filaments was assessed as the change in intensity ratio (I(1,0)/I(1,1)). In diabetic hearts cross-bridge disposition was most notably abnormal in the diastolic phase (p < 0.05) and to a lesser extent the systolic phase (p < 0.05). In diabetic rats only, there was a transmural gradient of contractile depression. Elevated diabetic end-diastolic intensity ratios were correlated with the suppression of diastolic function (p < 0.05). Furthermore, the expected increase in myosin head transfer by dobutamine was significantly blunted in diabetic animals (p < 0.05). Interfilament spacing did not differ between groups. We reveal that impaired cross-bridge disposition and radial transfer may thus underlie the early decline in ventricular function observed in diabetic cardiomyopathy.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Contracción Miocárdica , Miosinas/metabolismo , Animales , Cardiomiopatías Diabéticas/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Dispersión del Ángulo Pequeño , Presión Ventricular , Difracción de Rayos X
17.
Int J Cardiol ; 168(2): 1174-85, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-23219315

RESUMEN

BACKGROUND: Pathological deposition of extracellular matrix in the non-infarct zone (NIZ) of the ventricle post myocardial infarction (MI) is a key contributor to cardiac remodeling and heart failure. FT011, a novel antifibrotic compound, was evaluated for its efficacy in neonatal cardiac fibroblasts (NCF) and in an experimental MI model. METHODS AND RESULTS: Collagen synthesis in NCF was determined by (3)H-proline incorporation following stimulation with TGF-ß or angiotensin II (Ang II). FT011 inhibited collagen synthesis to both agents in a dose dependent manner. In vivo, Sprague Dawley rats underwent left anterior descending coronary artery ligation or sham surgery and were randomized one week later to receive either FT011 (200mg/kg/day) or vehicle for a further 4 weeks. Echocardiography and cardiac catheterization were performed, and tissues were collected for histological analysis of collagen, myocyte hypertrophy, interstitial macrophage accumulation and Smad2 phosphorylation. mRNA expression of collagens I and III and TGF-ß was measured using in situ hybridization and RT-PCR, respectively. FT011 treatment was associated with improved cardiac function (increased ejection fraction, fraction shortening and preload recruitable stroke work) and myocardial remodeling (reduced left ventricular diameter and volume at both end diastolic and systolic) compared with vehicle treatment. FT011 significantly reduced collagen matrix deposition, myocyte hypertrophy and interstitial macrophage infiltration, and mRNA expression of collagens I and III in NIZ compared with vehicle treatment. CONCLUSION: Anti-fibrotic therapy with FT011 in MI rats attenuated fibrosis and preserved systolic function.


Asunto(s)
Antifibrinolíticos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Ácidos Cafeicos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , ortoaminobenzoatos/uso terapéutico , Animales , Animales Recién Nacidos , Antifibrinolíticos/farmacología , Presión Sanguínea/fisiología , Ácidos Cafeicos/farmacología , Colágeno/antagonistas & inhibidores , Colágeno/biosíntesis , Masculino , Infarto del Miocardio/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular/fisiología , ortoaminobenzoatos/farmacología
18.
Eur J Heart Fail ; 14(5): 549-62, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22417655

RESUMEN

AIMS: Cardiac remodelling in diabetes includes pathological accumulation of extracellular matrix and myocyte hypertrophy that contribute to heart dysfunction. Attenuation of remodelling represents a potential therapeutic target. We tested this hypothesis using a new anti-fibrotic drug, FT011 (Fibrotech Therapeutics Pty Ltd), on diabetic Ren-2 rats, a model which replicates many of the structural and functional manifestations of diabetic cardiomyopathy in humans. METHODS AND RESULTS: Homozygous Ren-2 rats were randomized to receive streptozotocin or vehicle then further randomized to FT011 (200 mg/kg/day) or vehicle treatment for 6 weeks. Prior to tissue collection, cardiac function was assessed via echocardiography and cardiac catheterization. Total collagen deposition and cardiomyocyte hypertrophy were assessed by picrosirius red and haematoxylin and eosin staining, respectively. Macrophage interstitial infiltration and type I and III collagen were quantitated by immunostaining. Without affecting blood pressure or hyperglycaemia, treatment of diabetic rats with FT011 significantly attenuated interstitial fibrosis (total collagen, 5.09 ±1.28 vs, 2.42 ±0.43%/area; type I collagen, 4.09 ±1.16 vs. 1.42 ±0.38%/area; type III collagen, 1.52 ±0.33 vs. 0.71 ±0.14 %/area; P < 0.05), cardiomyocyte hypertrophy (882 ±38 vs. 659 ±28 µm(2); P < 0.05), and interstitial macrophage influx (66 ±5.3 vs, 44 ±7.9 number/section; P < 0.05). Cardiac myopathic dilatation was normalized, as evidenced by reduced left ventricular inner diameter at diastole (0.642 ±0.016 vs. 0.577 ±0.024 cm), increased ejection fraction (75 ±1.1 vs. 83 ±1.2%) and preload recruitable stroke work relationship (44 ±6.7 vs. 77 ±6.3 slope-mmHg; P < 0.05), and reduced end-diastolic pressure-volume relationship (0.059 ±0.011 vs. 0.02 ±0.003 slope-mmHg/µL; P < 0.05). CONCLUSIONS: A direct anti-fibrotic agent, FT011, attenuates cardiac remodelling and dysfunction in experimental diabetic cardiomyopathy. This represents a novel therapy for the treatment of diabetic cardiomyopathy associated with cardiac fibrosis and hypertrophy.


Asunto(s)
Antifibrinolíticos/uso terapéutico , Ácidos Cafeicos/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/patología , Miocitos Cardíacos/patología , ortoaminobenzoatos/uso terapéutico , Animales , Cateterismo Cardíaco , Cardiomegalia/etiología , Cardiomegalia/patología , Enfermedad Crónica , Colágeno/metabolismo , Fibrosis/tratamiento farmacológico , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/metabolismo , Inmunohistoquímica , Masculino , Ratas , Ratas Endogámicas , Ratas Sprague-Dawley , Estreptozocina
19.
Cardiovasc Ther ; 30(1): e30-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21883991

RESUMEN

Chronic heart failure (CHF) is a growing health problem in developed nations. The pathological accumulation of extracellular matrix is a key contributor to CHF in both diabetic and nondiabetic states, resulting in progressive stiffening of the ventricular walls and loss of contractility. Proinflammatory disease processes, including inflammatory cytokine activation, contribute to accumulation of extracellular matrix in the heart. Transforming growth factor-ß is a key profibrotic cytokine mediating fibrosis. Current therapeutic strategies do not directly target the profibrotic inflammatory processes occurring in the heart and hence there is a clear unmet clinical need to develop new therapeutic agents targeting fibrosis. Accordingly, strategies that inhibit proinflammatory cytokine activation and pathological accumulation of extracellular matrix (ECM) provide a potential therapeutic target for prevention of heart failure. This review focuses on the therapeutic targeting of TGF-ß in the prevention of pathological fibrosis in the heart.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Proteínas de la Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Enfermedad Crónica , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Mediadores de Inflamación/metabolismo , Miocardio/patología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular/efectos de los fármacos
20.
Arterioscler Thromb Vasc Biol ; 32(2): 370-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075246

RESUMEN

OBJECTIVE: In diabetes, long-term micro- and macrovascular damage often underlies the functional decline in the cardiovascular system. However, it remains unclear whether early-stage diabetes is associated with in vivo functional impairment in the coronary microvasculature. Synchrotron imaging allows us to detect and quantify regional differences in resistance microvessel caliber in vivo, even under conditions of high heart rate. METHODS AND RESULTS: Synchrotron cine-angiograms of the coronary vasculature were recorded using anesthetized Sprague-Dawley rats 3 weeks after treatment with vehicle or streptozotocin (diabetic). In the early diabetic state, in the presence of nitric oxide and prostacyclin, vessel diameters were smaller (P<0.01) and endothelium-dependent vessel recruitment was already depressed (P<0.05). Endothelium-dependent and -independent vasodilatory responses in individual coronary vessels were not different in vivo. Inhibition of NO and PGI(2) production in diabetes uncovered early localized impairment in dilation. Diabetic animals displayed focal stenoses and segmental constrictions during nitric oxide synthase/cyclooxygenase blockade, which persisted during acetylcholine infusion (P<0.05), and a strong trend toward loss of visible microvessels. CONCLUSIONS: Synchrotron imaging provides a novel method to investigate coronary microvascular function in vivo at all levels of the arterial tree. Furthermore, we have shown that early-stage diabetes is associated with localized coronary microvascular endothelial dysfunction.


Asunto(s)
Angiografía Coronaria/métodos , Enfermedad Coronaria/diagnóstico por imagen , Vasos Coronarios/patología , Diabetes Mellitus Experimental/patología , Microcirculación , Sincrotrones , Animales , Enfermedad Coronaria/etiología , Enfermedad Coronaria/patología , Vasos Coronarios/fisiopatología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Epoprostenol/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Estreptozocina/efectos adversos , Vasoconstricción/fisiología , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...